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Abstract

Human navigation is facilitated through the association of actions with landmarks,
tapping into our ability to recognize salient features in our environment. Con-
sequently, navigational instructions for humans can be extremely concise even
easily distilled into linguistic content, indicating a small memory requirement
and no reliance on complex and overly accurate navigation tools. Conversely,
current autonomous navigation schemes rely on accurate positioning devices and
algorithms as well as extensive streams of sensory data collected from the en-
vironment. Inspired by this human capability and motivated by the associated
technological gap, in this work we propose a hierarchical end-to-end meta-learning
scheme that enables a mobile robot to navigate in a previously unknown envi-
ronment upon presentation of only a few sample images of a set of landmarks
along with their corresponding high-level navigation actions. This dramatically
simplifies the wayfinding process and enables easy adoption to new environments.
For few-shot waypoint detection, we implement a metric-based few-shot learn-
ing technique through distribution embedding. Waypoint detection triggers the
multi-task low-level maneuver controller module to execute the corresponding
high-level navigation action. We demonstrate the effectiveness of the scheme
using a small-scale autonomous vehicle on novel indoor navigation tasks in several
previously unseen environments. The code, dataset, and example test recordings
are made available online.1

1 Introduction

It has been widely accepted that some form of accurate positioning scheme such as visual or Lidar
SLAM or GPS is an indispensable part of the sensory stack in a mobile robot [8, 2]. However, access
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Figure 1: Proposed workflow. One or a few example images are used by the mobile robot to detect
predefined landmarks in the environment. Upon landmark detection, the corresponding high-level
discrete navigation action (e.g. turn right, turn left, etc.) is retrieved from a lookup table and passed
to a continuous maneuver controller. Continuous control executes the resulting navigation command
while avoiding obstacles and maintaining the vehicle on a drivable path.

to such sensory data and the associated processing poses challenges in terms of computational load and
real-time processing limitations, hardware requirements, sensor fusion, and data integration [27, 35],
adding to the cost and complexity of the system. In addition, some sensory modalities such as
Global Positioning Systems (GPS), may not be robustly available on factory floors or in dense
urban areas featuring high-rises, multi-level bridges, tunnels, and underground passageways due to
signal blockage or multipath fading. Even assuming a future with extremely low-cost sensing and
unbounded computational and power resources, redundancy is key for the widespread adoption of
mobile robots in general and autonomous vehicles in particular, necessitating the development of
novel navigation tools that can complement existing technologies.

In this research, we present a different perspective on vehicle trajectory planning and control which
enables an autonomous vehicle to drive in new environments without reliance on computationally
intensive localization or associated sensors. This approach is inspired by how humans are capable
of following linguistic address instructions to traverse through an unseen route solely based on
descriptions of a limited set of visual cues paired with a corresponding high-level navigation action
(“Turn left at the block with red building,” for instance). In this approach, it is assumed that the
mobile robot is capable of low-level maneuvers while executing high-level navigational decisions
such as turning right/left, making U-turns, etc. In such a case, to successfully complete a route,
the mobile robot only needs to reliably recognize where along the path new high-level navigation
decisions should be made. With this perspective, in our approach, hereafter referred to as DNS
(Description-based Navigation System), path planning and execution are decomposed into a two-level
hierarchy of maneuvering and navigation [5]. The former is concerned with vehicle maneuvers with
the aim of maintaining the vehicle on a drivable passageway while avoiding obstacles. The latter
provides higher-level planning in which the vehicle is guided toward a final destination by associating
a limited number of images of distinct waypoints with their corresponding high-level actions.

Figure 1 demonstrates a workflow for the proposed hierarchical approach. Separate modules are
assigned to the low-level maneuver and high-level navigation aspects of the methodology, issuing
continuous control commands and discrete high-level decisions, respectively. To prepare a vehicle
for an upcoming route, firstly a set of waypoints are identified. These waypoints are locations
in which the vehicle has to execute a new high-level action. The vehicle is then provided with a
description of the route, comprising the visuals of the waypoints along with their assigned navigation
actions compiled into a look-up table (LUT). Upon recognizing a waypoint through visual cues, the
vehicle then refers to the corresponding action to be executed by the maneuver control module which
generates continuous commands to accelerate/decelerate and steer the vehicle.

In this work, we assume that we have access to at least one or a few example images of each waypoint
location. This is a reasonable assumption given the availability of street view data e.g. through
Google Street View for road navigation, and the low cost of collecting a limited set of such images for
indoor applications. We then formulate the waypoint detection process through a few-shot learning
scheme. The incorporated few-shot scheme is based on distribution embedding of visual scenes
to allow for more expressive representations and improve the robustness of the method given the
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limited teaching samples. The encoding is paired with an enhanced latent space metric for comparing
memory content and online data stream.

The contributions of this work can be enumerated as follows: 1) We present a simplified description-
based, end-to-end navigation scheme in which low-level maneuvering and high-level navigation are
split into separate modules. The route is described to the vehicle via a LUT constituting one or a
few example images of key waypoints along with their corresponding high-level navigation actions,
which are then used to condition the maneuvering control upon waypoint detection. 2) We present an
efficient scheme for metric-based few-shot learning for robust identification of waypoints. 3) Finally,
via experiments in multiple environments we demonstrate how well the proposed waypoint detection
and high-level navigation model integrates with a conditional network for low-level maneuver control
of the autonomous vehicle.

The paper hereafter is organized as follows: in Section 2 we review some of the prominent and
recent approaches to various aspects of autonomous navigation including localization, path planning,
and motion control. Section 3 discusses the proposed description-based modular navigation, and in
Section 4 the proposed few-shot technique and its deployment in the context of DNS is explained
in detail. In Section 5 we demonstrate the performance results for offline as well as real-time
implementation of DNS and present the associated ablation study. Section 6 concludes the paper and
presents future opportunities.

2 Related Works

In recent years, localization, path planning, and motion control for autonomous navigation have been
active areas of research. Various sensors including cameras, GNSS (Global Navigation Satellite
System) receivers, IMU (Inertial Measurement Unit) devices, visual and thermal cameras, and Lidar
sensors have been adopted to develop autonomous functions using various AI technologies as well as
classical control paradigms. In this section, we review some of the recent works in this domain.

[23] and [10] propose CNN-based outdoor and indoor localization techniques in a previously seen
environment based on landmark detection and image classification. In [3], GNNS/INS (Inertial
Navigation System) highway localization is further refined against detected signs and road facilities.
In [24, 25], the need for HD prior maps for localization is relaxed by using Standard Definition (SD)
maps paired with onboard perception for inferring the HD map online. Further, precise localization
is obtained using a Localizing Ground Penetrating Radar (LGPR) to retrieve stable underground
features that are robust to weather changes. [17] combines OpenStreetMap road network and local
perception information obtained by 3D-Lidar and CCD camera sensor fusion to refine the global
localization and path planning. [31] combines the point-to-point local planner with Ultra-wideband
(UWB) localization technology.

For path planning and motion control, [28] uses semantic line detection and segmentation to identify
traversable lanes for agricultural robots and vehicles. [22] also uses image segmentation paired with
topological maps for road following and control. [20] leverages image segmentation as well as birds-
eye view (BEV) perspective transformation to obtain a cost map and through A∗ algorithm carries
out path planning and obstacle avoidance. In [6] lane detection and discrete optimization among
considered paths, generated with cubic spline interpolation using GPS data, are used for path planning,
and fuzzy sliding mode control is used for steering. [38] incorporates a motion planning system based
on polynomial parameterization to compute the path, as well as a model-predictive-control-based
system for trajectory tracking. [7] emphasizes route repeating capability through teach and repeat
that utilizes odometry information and generates correction signals through lightweight processing of
the visual input. For improving autonomous motion control, [19] proposes incorporating prediction
of road drivers’ intentions through hidden Markov models. Some techniques are also specifically
designed to perform specialized maneuvers such as lane change [36], overtaking [26], and roundabout
maneuvers [12].

Imitation learning [21, 4, 16] and reinforcement learning [31, 12, 9, 34, 33, 37] have also been
attractive domains in mobile robotics research. [21] incorporates graph convolutional neural networks
(GCNNs) for the perception of global and geometric features of the environment during complex nav-
igation situations such as unsignaled intersections. Navigation policy is learned through conditional
imitation learning given the high-level navigation command. [4] generates a BEV representation
through adversarial training that also denotes the desired route given camera input and high-level
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navigation command obtained by GPS route planning. Given the BEV prediction and the current state
of the vehicle, control policy is learned from expert demonstrations. In [16], the authors demonstrate
how by utilizing Imitation from Observation (IfO) a robot can learn a good navigation policy for
a route using the demonstrator’s ego-centric video despite viewpoint mismatch. In [9] RL is used
with the objective of maximally prolonging each episode in order to sequentially learn navigation
policies. [34] proposes a deep RL approach for lateral vehicle motion control by using sequences
of waypoints generated by a planning module to predict steering on simulated data. [33] leverages
inverse RL to infer the cost function that justifies the expert behavior given the expert’s observations
and state-control trajectory. It then optimizes for a model of expert behavior. Finally, [37] introduces
self-supervised environment synthesis that can utilize limited real-world data to construct navigation
scenarios and synthesize training environments, which help mitigate the performance drop when
bringing a model trained on simulation to the real world.

Some recent works have also demonstrated how LLMs and vision-language models can be leveraged
for robot navigation tasks. In [18] LLMs are used toward recomposing API calls to generate new
policy code to process perception outputs and parameterize control primitives given natural language
commands. [15] additionally uses vision-language models for geometric mapping of the environment.

In the following section, we discuss the Description-based Navigation System (DNS), a control
scheme that places special emphasis on data efficiency. DNS, which is grounded in the latest
advances in few-shot learning, draws inspiration from the human ability to traverse unfamiliar
environments using minimal address information to reach a desired destination.

3 Description-Based Navigation System

The proposed process of setting up a mobile robot for an upcoming route consists of the following
steps:

1. Identify a set of waypoints along the route: These waypoints are only selected at locations
where the vehicle has to execute a new high-level navigation action, e.g. at an intersection
where a vehicle should take a turn.

2. Assign a discrete navigation action to each waypoint and form an address lookup table
(LUT).

3. Retrieve example images of each waypoint location: In this approach, we are assuming that
for each waypoint, one or a few example images are available.

4. Obtain representations for each waypoint by processing the images through the model.

5. Provide the waypoint representations to the vehicle so that they become identifiable upon
future exposure to similar visual cues.

Given the limited number of samples available for each landmark as well as the variety of potential
routes in many applications, few-shot learning is adopted to train the high-level navigation model
so that it can quickly adapt to previously unseen waypoints. Individual memory slots are assigned
to specific landmarks and paired with their corresponding high-level navigation decisions. Memory
slots are populated using the extracted landmark representation (see Section 4 for more detail). The
above process, hereafter referred to as the route teaching stage, is schematically shown in Figure 2.

At drive time, the captured images are continuously processed using the same model as that used
during the teaching stage. The generated representations are compared against memory content
associated with the upcoming waypoint for landmark detection. Upon recognition of a waypoint,
the vehicle refers to LUT to retrieve the corresponding high-level action which is then provided to
the low-level maneuver control unit for execution. This process is schematically demonstrated in
Figure 3.

The maneuver control unit is a neural network that receives incoming images paired with an action
condition (e.g. turn right) and controls the vehicle to execute the desired action (Figure 4). The
end-to-end maneuver control module is trained via imitation learning to receive images as input and,
conditioned on the high-level action, issue acceleration, deceleration, and steering commands. This
controller maintains its latest action condition until a different high-level decision associated with a
newly detected waypoint is made. Figure 5 schematically demonstrates this point.

4



Figure 2: Route teaching stage. Prior to vehicle departure, the image representations from prede-
termined waypoints are used to populate the corresponding memory slots along with the high-level
navigation command for future reference.

Figure 3: High-level navigation module. During inference, the navigation module processes the
incoming images to compare them against memory content and detect waypoints. Upon detection,
the corresponding action is retrieved from the lookup table and issued to the maneuver control unit.

Figure 4: The low-level maneuver control module is composed of a feature extractor that processes
the camera input, which is then concatenated with the discrete navigation command and presented to
the continuous controller to obtain steering and acceleration/deceleration outputs.

4 Few-shot learning for waypoint detection

In this section, we describe the formulation of few-shot classification and elaborate in detail on how
the proposed few-shot technique is adapted for waypoint detection training and deployment.

4.1 Few-shot classification: problem formulation

As part of a few-shot classification training, we are given dataset D = {(xi, yi)}Ni=1 of labeled
samples, where each yi ∈ {1, . . . ,K} is the label of the corresponding example xi. For training,
many w-way s-shot classification tasks, or episodes, can be randomly formed, where w denotes
the total number of participating classes and s denotes the number of labeled examples or shots,
commonly referred to as the support set, for each class. The model is then trained by minimizing
classification loss on q unlabeled samples (queries). Trained under this scheme, the model learns to
rely on a small number of labeled samples (shots) for new tasks with novel participating classes.
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Figure 5: Example right turn. The vehicle maneuver control is initially conditioned to drive straight.
Upon detecting the first waypoint (view with the Eiffel Tower), the condition switches to right turn,
and upon detecting the next waypoint (view with the Tower of Pisa) it switches back to straight.

4.2 Enhanced metric few-shot learning

In metric few-shot learning techniques, one aims to find a suitable representation that places instances
from the same class close to each other while separating instances from different classes in the
embedding space. This will facilitate accurate classification. In Prototypical Networks [30], for
instance, this is done by minimizing the Euclidean distance between a query and its true class
prototype defined as the mean of the support sample representations for that class, while maximizing
its distance from all other class prototypes.

Deep variational embeddings in the context of few-shot learning have been shown to improve classical
metric few-shot learning techniques [39, 11], which can suffer from noise due to data scarcity and
lack of interpretability. In these methods, rather than estimating a class mean based on a few sample
vector representations, a more expressive class representation is adopted, for instance, by assuming
a Gaussian form. In [39], each sample is mapped to a Gaussian distribution of its associated class
through a neural architecture, whose output is interpreted as mean and the variances that form a
diagonal class covariance matrix. Individual sample outputs from each class are then combined to
obtain a more accurate estimate of class mean and covariance.

We adopt a similar scheme, in which we retrieve class distribution mean and diagonal covariance
estimates for each sample through a neural network and combine samples to form a more accurate
class distribution. For class k, we obtain the combined distribution Sk = (µk,Σk) by obtaining
combined estimates for mean and covariance. The combined estimate of class k mean is simply the
average of individual mean estimates:

µk =
1

s

s∑
i=1

µi. (1)

We adopt a linear combination of diagonal covariance estimates to obtain a combined minimum
variance estimate [13]. Assuming equal weights, it reduces to an arithmetic mean:

Σk =
1

s

s∑
i=1

Σi. (2)

Given a query xj , the associated distribution Qj = (µj ,Σj) is obtained from the network and viewed
as the estimate of the class distribution associated with that query. To quantify the distance between
class support and queries one possibility is to rely on a distribution-to-distribution symmetrized
Mahalanobis distance. In this form, the distance between the query and class k distribution becomes

d2(Qj ,Sk) = (µj − µk)T (Σk
j )

−1(µj − µk) =

d∑
i=1

(
µj,i − µk

i

)2
Σk

j,ii

, (3)
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where d indicates the dimensionality of the embedding space and

Σk
j =

1

2

(
Σj +Σk

)
. (4)

4.3 DNS with distribution embeddings

Figure 6 shows the waypoint detection model. In order to train the proposed technique for use in
few-shot navigation, we collect and use a dataset of various courses, with multiple repetitions (or laps)
of each. For each lap of each course, the frames are split into segments corresponding to positive or
negative examples for each waypoint within that course. Frames at which the high-level navigation
action corresponding to the nth waypoint can be safely initiated will be used as positive class examples
for that waypoint. All the frames beyond the positive segment of the (n− 1)th waypoint and prior to
the nth waypoint’s positive segment will be used as the negative class examples for the nth waypoint.

In each classification task during training, we construct the support distribution for the positive class
(i.e. a given waypoint) as follows: first, we choose a random lap from a random course, then we
make a random selection of s consecutive images from a random waypoint in the lap. We then pass
each image through the backbone and present to mean and covariance modules to retrieve individual
distributions and obtain a combined prototypical estimate of the distribution associated with the
waypoint. We then obtain query distributions by sampling s consecutive frames from either the
positive or negative classes. qp positive query distributions are constructed from the positive segment
associated with the same waypoint but in different recordings of the path. qn negative distributions
are taken from the corresponding negative segment in either the same lap or different laps. Combined
distributions are then created in a similar fashion as the positive support distribution.

Next, the distance between each of the qp + qn queries and the positive support distribution is
calculated across individual embedding space dimensions (i.e. separately for each i ∈ {1, . . . , d} in
Equation 3) and the elementwise distance vector is presented to a classifier module as it preserves
more relevant information for the subsequent classification. The classifier estimates the probability
of the query matching the waypoint. Binary cross-entropy loss is then calculated between true and
predicted waypoint assignments for queries in order to update model parameters.

At inference, the vehicle memory is populated with one or multiple combined distributions per
waypoint, corresponding to consecutive frames from a single previous recording of waypoint locations.
Similar to training time, query distributions are formed by combining a number nq of the most recent
consecutive frames captured via the vehicle camera. The elementwise distance vector between the
incoming query and the memory distribution associated with the upcoming waypoint is calculated
and presented to the classifier module to determine whether the waypoint is reached. If the output
probability is larger than a threshold value, the waypoint is detected. In the case of multiple memory
distributions for a waypoint, the maximum probability is considered. Once a decision is made on
the executable action, it is sent to the maneuver control unit to update the network condition and
accordingly change the throttle and steering response.

5 Experiments

5.1 Dataset and training

The dataset consists of 36 courses, recorded in 11 University of California, Davis buildings. Of 36
courses, 18 are collected on a clockwise and 18 on a counterclockwise loop, with CW/CCW pairs
covering the same closed paths. The recordings are repeated multiple times so that there are between
2 and 8 completed recordings for each course. Sample images are shown in Figure 7.

The recordings are done using a remote-controlled vehicle equipped with cameras. Figure 7 shows
the setup of the RC vehicle. It is equipped with Arduino Mega for analog control of steering and
throttle, as well as an onboard ZOTAC mini PC with 8 GB RAM, Nvidia GeForce RTX 2070 Mobile
GPU, and Intel Core i7-9750H processor to run custom navigation models. Two ELP fisheye cameras
with a 180◦ field of view are mounted on the car, each turned 30◦ outwards, creating a 60◦ relative
angle between the two camera orientations. Fisheye cameras were used given their wide field of view.
While the images will be distorted, given that the distortion profile is fixed and deterministic, this will
not pose any significant issues. The car can be set to manual or autonomous, which we will use for
online evaluation.
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Figure 6: For each waypoint, a sequence of frames from an existing recording at the waypoint location
(gray outline) are passed through the backbone and the distribution estimation model to obtain a
corresponding class distribution for each frame (shown in gray). The distributions are then combined
to form the waypoint prototype, which will be stored in memory for use during wayfinding. For a
query frame sequence, the distribution is similarly obtained. The elementwise distance between the
memory prototype and the real-time calculated query distribution is obtained and fed to the classifier
for detection (shown in green and red respectively for a match and a mismatch). Once a waypoint is
detected, the corresponding navigation command is retrieved from the LUT to condition the low-level
continuous control module.

Figure 7: Sample dataset images (top) and RC vehicle used for data collection and evaluation
(bottom).

To segment each course into various landmark/non-landmark segments after collecting data, we use
the output steering signal. A fixed number of frames before the onset or completion of a turn are
generally considered to be positive samples for waypoint detection, i.e. any one of these frames
would have been a safe candidate for initiating the waypoint action at the time of recording.

To train the model, 12 CW/CCW pairs are used. 6 courses are used for validation in order to identify
the best-performing model. The remaining courses are reserved for testing. Since our main focus in
this work is on landmark detection and given the limited data-collection budget, the data for training
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the maneuver control module included the test locations in the form of repeats of each road segment
with random actions at various intersections. The corresponding action is provided as a condition to
the control module during its training. We note that while the downstream low-level control module
has been exposed to test courses, the course remains unseen for the waypoint detection model, and
successful navigation hinges on successful landmark detection. We do not consider the effect of
obstacles on the controller performance. Waypoint detection module training, however, is done with
augmentations that promote robustness to scene occlusion (please see supplementary material).

We use the ResNet-50 architecture [14] as the waypoint detection model backbone. We estimate the
sample class mean through a linear layer applied to backbone-generated features. The covariance
module and the classifier are fully connected modules with 2 and 4 layers, respectively. To ensure
positive variances, Softplus activation is used at the covariance output. Sigmoid is applied at
the classifier output, which denotes the probability that a waypoint match is detected given the
elementwise distance input.

For initializing the ResNet-50 encoder, we use weights obtained through pretraining on ImageNet [29]
in the self-supervised manner described in [1], which is made available by the authors. We believe a
backbone pretrained on ImageNet is a good candidate initialization given the amount and diversity of
real-world visual data that it contains. We train the model in two phases. In phase 1, we freeze the
backbone and only train the mean and covariance modules, as well as the classifier. This prevents
dramatic unfavorable updates to the backbone as a result of random initialization of other components.
Next, we pick the best-performing model from this phase and jointly fine-tune all model parameters.
For training the control unit, we use an EfficientNet-B0 backbone [32] and augment the output by the
high-level navigation condition before passing through a fully connected segment whose output value
will be used as a signal to steer the vehicle. For simplification, we fix the vehicle throttle and only
consider steering. More details on training and hyperparameters are included in the supplementary
material.

5.2 Offline evaluation

We use the 6 unseen test courses to evaluate the performance of the waypoint detection model offline.
For evaluation on each course, we construct several positive class distributions per waypoint using
samples from a single lap and store them in memory. We then provide frames from other laps in the
same course in sequence and construct query distributions by combining the most recent consecutive
frames. The elementwise distance between the query and memory distributions from the upcoming
waypoint is then provided to the classifier for detection, where the maximum match probability
among memory distributions is considered. The accuracy is evaluated using the F1 score between
ground truth and the predicted label of each road segment. This gives us a conservative estimate of
model performance (please see supplementary material).

5.3 Online evaluation

For online evaluation, the trained model is loaded onto the vehicle computer. Test location waypoint
images extracted from a single lap recording (memory lap) and their corresponding actions are
provided to the model to construct memory distributions and the LUT. It is then set to autonomous
driving mode to navigate the path. Each course test is repeated four times in total, twice for each of
the two different memory laps. The course-level (completed course) as well as the waypoint-level
(correctly identified waypoints) success rates are reported.

5.4 Results and ablation study

Table 1 shows the results from offline evaluation. It also demonstrates the effects of backbone
pretraining as well as distribution embedding with the proposed symmetrized Mahalanobis metric
versus point embedding and Euclidean metric adaptation. Pretraining significantly enhances the
model’s performance. Self-supervised pretraining gives superior performance compared to its
supervised counterpart. Distribution embedding also improves the performance.

In online evaluation, each of the 6 courses consists of 8 waypoints. Each course is evaluated 4 times,
corresponding to two repetitions for each of the two memory laps. We also consider a separate, long
course (Figure 8) consisting of 20 waypoints and make two recordings with which we populate the
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Table 1: Offline evaluation results and ablation study. Metric denotes whether the Euclidean or the
proposed symmetrized Mahalanobis metric was used in the few-shot learning context.

Backbone Pretraining Metric F1 Score (%)

– Symmetrized Mahalanobis 66.7
Supervised (ImageNet) Euclidean 81.8
Supervised (ImageNet) Symmetrized Mahalanobis 82.3

Self-supervised (ImageNet) Euclidean 85.7

Self-supervised (ImageNet) Symmetrized Mahalanobis 86.8

Figure 8: Long course for online evaluation.

memory and test in a similar manner. This results in 28 total course-level and 272 waypoint-level
evaluations. The model successfully completed all courses except for two, in one of which one
waypoint was not detected. In that experiment, a large part of the frame near the waypoint was
occluded by a group of pedestrians walking in front of the vehicle. As for the other, the waypoint
detection was successful but the control module failed to complete the maneuver, likely due to strong
glare. This puts the course-level and waypoint-level success rates at 92.9% and 99.3%, respectively.

6 Conclusion and future work

In this work, we proposed a two-stage, end-to-end technique for autonomous navigation consisting of
a high-level waypoint detector based on few-shot learning, as well as a low-level maneuver control
unit that controls the vehicle conditioned on the high-level navigation input. This technique only
requires a minimal amount of data from critical waypoints on an unseen route and has a low memory
and computation demand. We believe the demonstrated offline and online results serve as proof
of concept and motivate further developments with the aim of significantly reducing the need for
positioning devices, expensive repeated training, and extensive data from target environments.

We are conducting additional research to gauge the approach, its robustness, strengths and limitations,
as well as efficient ways to improve it in more diverse environments including outdoor settings.
Utilizing public road data (e.g. Google Street View) as a low-cost source of waypoint support
examples constitutes another aspect of our continued work. Besides more realistic autonomous
driving implementations, for instance, on a full-scale vehicle that uses street images paired with a
more sophisticated maneuver control mechanism, several exciting directions remain unexplored. One
is the regime in which the car has missed or misidentified a waypoint, which will likely throw the
vehicle entirely off-path. Robustness to outdoor landscape changes over time for instance due to
seasonal variations is another direction of focus. Going forward, addressing these problems without
substantial data collection, computation, and hardware overhead will be topics of particular interest.
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Supplementary Material

Waypoint detection training and evaluation details

At each frame, the left/right camera images are separately processed. They are resized to 224× 224
and normalized. During training, random rotation, color jitter, and coarse dropout are applied to the
images. After obtaining the 1000-dimensional elementwise distances associated with each camera,
the two vectors are concatenated and presented to the classifier.

At each waypoint, 15 frames leading to the steering initialization/completion are regarded as positive
frames for that waypoint, corresponding to a conservative viable range to start steering earlier than
where the steering was initiated when recording. The number of consecutive frames s combined
into a single distribution is set to 10 for both support and query. The same number is also used in
evaluation. During training, each training episode has 1 positive and 6 negative queries (qp and qn,
respectively). Parameters are updated after processing each episode batch size of 36 in phase 1 and 3
in phase 2. A total of 240 and 4000 iterations are processed in phases 1 and 2, respectively. Adam
optimizer is used with an initial learning rate of 10−4 in phase 1 and 10−5 in phase 2. The learning
rate is divided by two after 160 iterations in phase 1 and every 1000 iterations in phase 2. In phase 1,
the model is evaluated on the validation set every 32 iterations as well as at the end. It is evaluated
every 200 iterations in phase 2.

For offline testing of a course, waypoint frames of a single lap are processed to obtain support
distributions associated with waypoint locations and store them in memory. A sliding 10-frame
window across a 15-frame range yields 6 different combined memory distributions per waypoint.
Once the memory is populated, we run through each test lap frame by frame, each time comparing
the most recent combined distribution with each of the 6 memory distributions, and obtain the
match probability as the maximum of the 6 resulting probabilities. Moving average is applied to the
generated probabilities to reduce noise. A waypoint is detected if the maximum of the 6 probabilities
is above a cutoff probability. Once a waypoint is traversed, the expected upcoming waypoint is
updated and a new binary classification task is set up. The evaluation is repeated for all configurations
of memory/test laps and average performance is reported.

Waypoint-level F1 score is calculated as follows: If a high-probability frame occurs in a non-waypoint
segment, it will be counted as a false positive, and if no high-probability frames are detected in a
waypoint segment, a false negative will be recorded. Each waypoint range is stretched by a fixed
small number of buffer frames before and after the original 15-frame range to improve the metric.
The frames prior to a waypoint account for the common occurrence of rising probabilities when
nearing a waypoint and hence, erroneously amplifying the false-positive rate (see Figure 9). The
frames after the nominal waypoint frames approximate positions where a turn could still be safely
initiated although a bit later than in the recording. As such, the offline F1 heuristic presents an
underestimation of performance. Per our observations, nearly all false positives correspond to early
detections which often pose no challenge in practice as implied by the large gap between online and
offline evaluation results.

For online evaluation, besides populating the memory, a lookup table is also stored with keys
corresponding to waypoint IDs. Instead of feeding consecutive test frames offline, the car is set
to autonomous to navigate the course. We did not notice any latency in online experiments. Both
through the steering module training procedure and observing vehicle detections during the test, we
ensure that successful performance at each waypoint follows a valid detection. If the car fails at a
waypoint, it is set up immediately after that waypoint, and the upcoming waypoint ID is manually
updated to evaluate the remainder of the course.

Low-level maneuver control module details

Data for the low-level control module is collected by running the car in test locations. At waypoint
positions, each maneuver action (straight/left turn/right turn) is repeated 3-5 times. This data is added
to the previously collected test location data to sensitize the model to the action condition and avoid
memorizing a specific navigation action at waypoints.

The model is composed of a pretrained EfficientNet-B0 backbone, whose 1280-dimensional output
passes through a linear layer and ReLU activation. At this stage, the 500-dimensional output is
concatenated with a 3-dimensional one-hot vector denoting the action condition (left turn/right
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Figure 9: Plot of waypoint match probability values for a sample course during offline evaluation.
Consecutive red and green vertical lines denote the original 15-frame range associated with each
waypoint. As exemplified in this plot, several false positives can occur due to rising probabilities
before reaching the nominal waypoint frames (for instance in the range between the third and fourth
waypoints). These are, however, not an issue in practice as online experiments show.

turn/straight), which then passes through two more layers with ReLU and sigmoid activations and
output dimensions of 100 and 1, respectively. The output is considered as steering.

The model is trained using mean square error (MSE) loss between true and predicted steering. The
two camera images are concatenated, resized to 104× 224, and normalized. During training, random
color jitter, Gaussian blur, and horizontal flip are applied to the image. In the case of horizontal
flipping, the steering is mirrored and in case the action condition is turning, it is adjusted to reflect a
turn in the opposite direction. The model is trained for 100 epochs with Adam optimizer and a fixed
learning rate of 10−4.
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